
Sacher Lasertechnik Group

ServalPlus


Master Laser Power Amplifier System Littman/Metcalf Master Laser Tapered Amplifier Technology

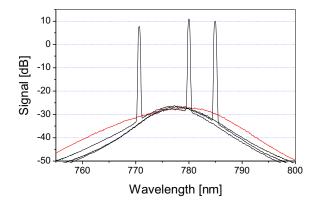
How does our Laser tune modehop-free ?

Outline

Physical Basics

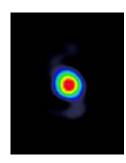
The emission wavelength of a laser is defined by two features. The first condition is the cavity mode. The second condition is the amplification range of the gain medium. Since diode lasers have an extremely wide gain region, it is necessary to put a wavelength selective medium inside of the cavity like a grating. In order to tune such a laser modehop-free, it is required to synchronize the grating defined wavelength with the cavity defined wavelength [1].

Technical Solution


Sacher Lasertechnik has realized the synchronization between grating defined and cavity defined wavelength by only a simple rotation of the mirror. The adjustment of the pivot point is done during the wavelength scanning operation of our Littman/Metcalf laser

system according to our patent 5,867,512 application. Due to this special method, we are able to ensure the best modehop-free tuning behavior of our laser system with the highest power available.

Technical Realization


Sacher Lasertechnik has combined its Littman/Metcalf tunable diode laser with a tapered amplifier. This results in a stable, narrow linewidth, wavelength tunable high power laser source for spectroscopy, optical cooling and trapping. The low linewidth below 500kHz of the Littman/ Metcalf design together with the excellent beam stability results in a superior laser source.

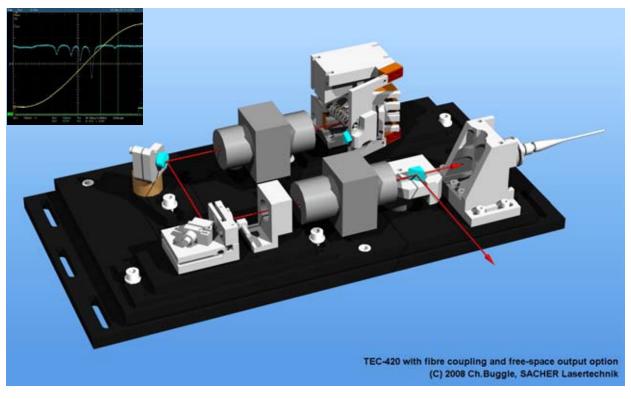
[1] M. G. Littman, H. J. Metcalf, Appl. Opt. 17, 2224, 1978

Red curve: TEC-420 without master Black curve: Injected master laser at different wavelengths

Beam Quality

Typical Values Power: 500 mW ... 2500mW M² < 1.7

Specifications


Output Power	500 mW 2500mW (depending on wavelength)
Wavelength	650nm, 670nm 735nm, 765nm, 780 nm, 795nm, 830nm, 850nm
	935nm, 960nm, 1010nm, 1060 nm, 1080nm, or specified
Linewidth (50ms)	< 0.5MHz, typ. 0.3MHz
Linewidth (20s)	< 5MHz, typ. 2MHz
Long Term Drift (24h)	Typical < 300MHz
Side Mode Supression	> 40 dB for a normal ECDL
Beam Waist _(2 w₀)	2.5 mm x 2.5 mm (typ.)
Beam Divergence	< 2 mrad
Beam Quality M ²	M² < 1.7
Coarse Tuning Range	10nm 40nm
Fine Tuning / Mode-Hop free	250GHz / 30 GHz 100 GHz
Polarization	Linearly > 1000:1
Weight	Laser Head: 2.6 kg, Power Supply: 9.5 kg
Laser Head Dimension (W x L x H)	214 x 356 x 119 mm

Model Specific: http://www.sacher.us/TALittmanData.php

Application:

http://www.sacher.us/TechDocs.php

Atom Cooling and Atom Trapping

Application Example

Saturated Absorption Spectroscopy

High resolution spectroscopy requires laser features like narrow linewidth, high passive stability, exact adjustable wavelength as well as an excellent fine tuning ability. The schemaic shows a MOPA setup. It includes a Littman/Metcalf master laser, tapered amplifier, optical Isolators as well as fiber coupling. The oscilloscope trace on the left hand side shows the cross-over transition of the D_2 -line of Rubidium.

About Sacher Lasertechnik

Company Profile

Sacher Lasertechnik is leading manufacturer of tunable external cavity diode lasers (ECDLs) with more than 10 years of experience. The product range includes antireflection coated diode lasers, ECDLs in Littrow and in Littman/Metcalf configuration as well as driver electronics for the LD and sophisticated measuring electronics. Please contact us with your measurement requirements. We would be proud to support you with our competence

Please contact us

Sacher Lasertechnik GmbH Rudolf-Breitscheid Str. 1-5 D-35037 Marburg/Lahn Germany Tel.: +49 6421 305 - 0 Fax: +49 6421 305299

LLC 5765 Equador Way Buena Park, CA90620 U. S. A. Tel.: 1-800-352-3639 Fax: 1-714-670-7662

Sacher Lasertechnik Email: contact@sacher-laser.com LLC Web: http://www.sacher-laser.com

